Total Posts:10Showing Posts:110
0.999 (Repeating) is equal to 1
Posts: 1,710
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 1:57:48 AM Posted: 9 months ago This blows my mind, here is the proof via algebra:
(R means repeating) (1/9)=0.111(R) 9x(1/9)=0.111(R) 1=0.999(R) Its so interesting how this works, normally I have limited interest in mathematics, but this takes the cake. https://en.wikipedia.org... Meh! 
Posts: 1
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 4:59:50 PM Posted: 8 months ago Here's another way to understand 0.99 (repeating) is equal to 1:
1/3=0.33 (repeating) 1/3*3=1 0.33 (repeating)*3=0.99 (repeating)=1 There are several other "proofs". 
Posts: 5,987
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 8:16:12 PM Posted: 8 months ago http://www.debate.org...
just 1/3 is .3 repeating, the decimal is the real number 1/3. The reason why it is not an easy to see integer is because the ration 1/3 is applied to a base 10 system. In hexadecimal 1/3 is .5 repeating. It's a real number. But it's not a real quantity that is infinitely growing large. It's a common confusion to think a number that expands infinitely is somehow infinite itself. it isn't. It's just one representation of it is with remainder. 
Posts: 3,929
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 8:36:42 PM Posted: 8 months ago At 1/31/2016 1:57:48 AM, Axonly wrote: So 1+1 = 0.999 (R) + 0.999 (R) If this is the case then: So 1+1 = 1.888 (R) ? Because this is the result of 0.999 (R) + 0.999 (R). If they are the same then the result of this equation should be the same. "Life calls the tune, we dance." John Galsworthy 
Posts: 5,987
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 8:51:00 PM Posted: 8 months ago At 1/31/2016 8:36:42 PM, famousdebater wrote:At 1/31/2016 1:57:48 AM, Axonly wrote: Maybe you should type that into a calculator. If you type in .9999999999999999999999999 add to .9999999999999999999999999 You will get 1.99999999999999999999999998 That 8 is only because I could not type in .9 repeating. Essentially that 8 would never be present in .9 repeating plus .9 repeating. So .9... plus .9... equals 1.9... which is 1+ .9... which is equivalent to 1+1 which equals 2. Again when we correct for 1.8 error the conjecture holds true .9 repeating equals 1. 
Posts: 3,929
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 8:52:00 PM Posted: 8 months ago At 1/31/2016 8:51:00 PM, Mhykiel wrote:At 1/31/2016 8:36:42 PM, famousdebater wrote:At 1/31/2016 1:57:48 AM, Axonly wrote: So irl if you were asked 1+1 you would answer 1.9999 (R)? "Life calls the tune, we dance." John Galsworthy 
Posts: 5,987
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 8:59:26 PM Posted: 8 months ago At 1/31/2016 8:52:00 PM, famousdebater wrote:At 1/31/2016 8:51:00 PM, Mhykiel wrote:At 1/31/2016 8:36:42 PM, famousdebater wrote:At 1/31/2016 1:57:48 AM, Axonly wrote: Please refer to my previous debate on this subject http://www.debate.org... I would reply with 2. But I also would not state 2 is the only way to answer it. Do you understand that 4 = 2^2= (2+2) = W30;16 = (1+3) = 4/1 = (4/2+4/2) = ect... There are more then one way to answer and yet the answers be the same quantity. what is 1/3 plus 2/3? If you keep them as fractions you have 3/3 which simplifies to 1. But if you do the division which is the fraction sign you get .99 repeating. Again 1 and .999 is equal. 2 different ways of saying the same thing. 
Posts: 3,950
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 9:12:26 PM Posted: 8 months ago Didn't see this before I made my OP...

Posts: 12,170
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 11:02:56 PM Posted: 8 months ago At 1/31/2016 1:57:48 AM, Axonly wrote: The problem with this proof is that it takes for granted that which it attempts to justify. If .111 is actually equal to 1/9, rather than a mere approximation of it, then yes, .999 = 1. But that's kind of a lot to assume, since it's the exact question at issue. It's just the assumption restated in a different way, namely that you can assert the equivalence of two things by defining their difference to be so small as to be unspecifiable in precise mathematical terms. There are those who believe that irresponsible breeding practices, and the stupidity which fosters them, cannot be stemmed without damage to our freedom. But freedom, and much else as well, cannot tolerate the geometric prolificacy of stupidity.  Chris Langan  
Posts: 4,944
Add as Friend Challenge to a Debate Send a Message 
1/31/2016 11:43:51 PM Posted: 8 months ago Yeah, that's not really a very good proof. The better one that tends to be more convincing is:
.999... = .999... x10 10(.999...) = 9.999... .999... 9(.999...)=9 /9 .999...=1 #UnbanTheMadman #StandWithBossy #BetOnThett "bossy r u like 85 years old and have lost ur mind" ~mysteriouscrystals "I've honestly never seen seventh post anything that wasn't completely idiotic in a tryingtobefunny way." ~F16 https://docs.google.com... 