All Big Issues
The Instigator
Pro (for)
The Contender
Con (against)
Anonymous

# .999...(repeating) =1

Do you like this debate?NoYes+0

Debate Round Forfeited
Commondebator has forfeited round #4.
Our system has not yet updated this debate. Please check back in a few minutes for more options.
Time Remaining
00days00hours00minutes00seconds
 Voting Style: Open Point System: 7 Point Started: 8/16/2017 Category: Science Updated: 3 years ago Status: Debating Period Viewed: 1,652 times Debate No: 103562
Debate Rounds (4)

32 comments have been posted on this debate. Showing 31 through 32 records.
Posted by Anonymous 3 years ago
It can be better explained like this,

If you have 100 and you're trying to reach 200, but every time you add to that 100 you reduce the amount you add by one tenth it will look like this.

100+10=110
We need 900% more of what we've just added to reach 200.

110+1=111
We need roughly 8999% more of what we've just added to reach 200.

111+0.1= 111.1
We need roughly 89998% more of what we've just added to reach 200.

The point is, as you reduce the amount added by a factor of ten, you increase the percentile amount needed by a factor of ten, thus you can never truly reach the number 200. My maths might be off slightly, but the point remains.
Posted by Anonymous 3 years ago
All you're doing is adding a 10th smaller each time.

Imagine it like this using 10's just to make it easier,

100+10+1+0.1+0.01=111.11

If you keep going you can only add more 1's, but you can never reach a 2 in any of these decimals, the pattern so far is consistent, what reason do we have to ever assume we will see a 2?

111.111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
This debate has 0 more rounds before the voting begins. If you want to receive email updates for this debate, click the Add to My Favorites link at the top of the page.